TTIC 31150/CMSC 31150
Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 7: SVD for Matrices

Homework 2 due today. Midterm next Monday.



Recap

Real Spectral Theorem (every self-adjoint operator has an orthonormal basis of
eigenvectors, Raleigh quotients: R, (v) = (D, ¢(¥)), eigenvectors as
maximizers/minimizers, positive semi-definiteness.

Consider ¢:V — W. Analyze using eigenvectors/eigenvalues of @@ and @ ¢™.

If v is eigenvector of @ " @:V — V with eigenvalue A # 0, then @ (v) is eigenvector
of pp™: W — W with eigenvalue A; in other direction, w, ¢™*(w).

If v1, v, are orthogonal eigenvectors of @*@ then @ (v,), @(v,) are orthogonal
eigenvectors of p@™.

SVD: Let g = -+ = ¢> > 0 be nonzero eigenvalues of ¢*@ with corresponding
orthonormal eigenvectors vy, ..., v,.. Let w; = @(v;)/0;. Then:

> Wi, ..., W, are orthonormal, ¢ (v;) = g;w; and @; (w;) = g;v;.
> @ = Yi_10; |wiNv;|, where |w;){v;| is outer product.



SVD for Matrices

Let’s consider matrices A € C"™*" viewed as linear transformations from C™ to C™.

e Let g > .-+ > g7 > 0 be nonzero singular values of A with v, ..., v, and wy, ..., w, as
the right and left singular vectors respectively.

> Av; = o;w;, A*w; = o;v;, where A* = AT,

T
_ k
A= z O-iwivi .

=1

* Then,

* Check: (Xj=1 oyw;v;)v; = ojw;v;v; = ojw; = Avj, and if extend vy, ..., vy to

orthonormal basis, then for all other basis vectors both sides give 0.



SVD for Matrices

Let’s consider matrices A € C"™*" viewed as linear transformations from C™ to C™.

e Let g > .-+ > g7 > 0 be nonzero singular values of A with v, ..., v, and wy, ..., w, as
the right and left singular vectors respectively.

> Av; = o;w;, A*w; = o;v;, where A* = AT,

T
_ k
A= z O-iwivi .

=1

* Then,

e Can write this as:
A=WXV"

Where W has wy, ..., w,- as columns, V* has vy, ..., vy asrows,and X isanr X r
diagonal matrix with X;; = o;.



SVD for Matrices




SVD for Matrices

Definition 1.1 A matrix U € C"*" is known as a unitary matrix if the columns of U form an

orthonormal basis for C".
If we complete w’s and v’s to an orthonormal bases, creating W,,, and V;, respectively,

these are unitary matrices.
— id, where id denotes

Proposition 1.2 Let U € C"" be a unitary matrix. Then UU" = U"U

the identity matrix.

We had A = WZV*. We can also write A = W,,Z'V,’ where X;; = o; fori < r and all

other entries of X' are 0.



SVD for Matrices

A=W,2 V!
ail air w1’_+1 w_m
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— Oy
0
\ 1)\
Av; = oyw; A AV =

AV = (WE'VHV = wy' AA'W =




Low-rank approximation for matrices

Given matrix A, we may want to find the matrix B of rank < k that “best approximates” A.

What notion of approximation?

A — B)v
We’'ll use spectral norm: I(A—B)|, = max I o Joll, .
D )

Forv = (cq,,¢) 7,
n \1/2
vl = (v,v) = (Zi=1|Ci| )

Next class will see also works for Frobenius norm = \/Zij(A — B)l-jz.

Solution: take top k singular vectors: B = A4;, = §‘=1 aw;v; .



Low-rank approximation for matrices

Proposition 2.1 | A — Ail[, = o141 I(A—B)[, = max |(A—B)oll,

o0 Y]l

Let’s start with the easier “=" direction:

What v should we try?
(A = Ap)Vir1 = Qizk+1 OiWiV )Vit1 = Op41Wi1-

Length is 0% 1 1.



Low-rank approximation for matrices

Proposition 2.1 |A — Agll, = 0pi1. |(A=B)], = max

Now let’s do the “<” direction: Write v as linear combination of v4, ..., v, plus
orthogonal component. Orthogonal part in nullspace.

#0

(A - B)oll,

121l

|

(A Ak)v — (Zl k+1 OiWiV; )(Zl 1 GV l) — ;ﬂ k+1 CiOiWi

1A = Avl* = || Zicgrr cioiwill* = Xizgralcil*lo;

We can wlog assume ||v|| = 1. What does this say about X7, . ;|c;|%?

SO Zl k+1|ci|2|0-l

|2

|2

is maximized at cx1 = 1. Get ||(4A — A )V||5 < 07, 4.

Ans: < 1.




Low-rank approximation for matrices

Proposition 2.1 | A — Ail[, = o141 I(A—B)[, = max I(A—B)o|l,
o0 ol

Now, just need to show that no other rank-k approximation can get closer.

But first, note that our argument also shows that ||A]|, = oy.

* Avy = Qi1 0iw;v)v; = gyw;. Lengthis ;.

c Av = B, owiv) )Xl ¢vy) = Xl coowy. [|AV||? = X1, cfof < of.



Low-rank approximation for matrices w0 e,

Proposition 2.4 Let B € C"*" have rank(B) < kand let k < r. Then ||A — B||, = 0341

Proof: (very similar to proof for Courant-Fischer thm)
 Since rank(B) < k, the nullspace of B has dimension > n — k. (rank-nullity thm)

* So, (nullspace of B) N span(vy, ..., Vx+1) is a subspace of dimension > 1.
Pick some unit-length 2 = )., ., <41 C;V; in this intersection.

* We have (A — B)Z = AZ— BZ = AZ, so:

* ||(4 — B)ZA”% = ”AZA”% = (AZ,AZ) = (X1<i<k+1 CiOiWi, D1<i<k+1 CiO'iWi>

_ 2 2 2\ 2  _ 2
= Di<isk+1 lCil70f = (leiskﬂ ¢ )Uk+1 = Ok 41



Midterm next Monday

* Where: In class (TTIC 530)
* When: 1:30pm — 3:00pm, Monday April 17

* You may bring in one sheet of notes.
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