TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 7: SVD for Matrices

Recap

- Real Spectral Theorem (every self-adjoint operator has an orthonormal basis of eigenvectors, Raleigh quotients: $R_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$, eigenvectors as maximizers/minimizers, positive semi-definiteness.
- Consider $\varphi: V \to W$. Analyze using eigenvectors/eigenvalues of $\varphi^* \varphi$ and $\varphi \varphi^*$.
- If v is eigenvector of $\varphi^*\varphi:V\to V$ with eigenvalue $\lambda\neq 0$, then $\varphi(v)$ is eigenvector of $\varphi\varphi^*:W\to W$ with eigenvalue λ ; in other direction, $w,\varphi^*(w)$.
- If v_1, v_2 are orthogonal eigenvectors of $\varphi^* \varphi$ then $\varphi(v_1), \varphi(v_2)$ are orthogonal eigenvectors of $\varphi \varphi^*$.
- SVD: Let $\sigma_1^2 \ge \cdots \ge \sigma_r^2 > 0$ be nonzero eigenvalues of $\varphi^* \varphi$ with corresponding orthonormal eigenvectors v_1, \ldots, v_r . Let $w_i = \varphi(v_i)/\sigma_i$. Then:
 - $\triangleright w_1, ..., w_r$ are orthonormal, $\varphi(v_i) = \sigma_i w_i$ and $\varphi_i^*(w_i) = \sigma_i v_i$.
 - $\triangleright \varphi = \sum_{i=1}^r \sigma_i |w_i\rangle\langle v_i|$, where $|w_i\rangle\langle v_i|$ is outer product.

Let's consider matrices $A \in \mathbb{C}^{m \times n}$, viewed as linear transformations from \mathbb{C}^n to \mathbb{C}^m .

- Let $\sigma_1^2 \ge \cdots \ge \sigma_r^2 > 0$ be nonzero singular values of A with v_1, \ldots, v_r and w_1, \ldots, w_r as the right and left singular vectors respectively.
 - $\triangleright Av_i = \sigma_i w_i, A^* w_i = \sigma_i v_i, \text{ where } A^* = \overline{A^T}.$
- Then,

$$A = \sum_{i=1}^{r} \sigma_i w_i v_i^*.$$

• Check: $(\sum_{i=1}^r \sigma_i w_i v_i^*) v_j = \sigma_j w_j v_j^* v_j = \sigma_j w_j = A v_j$, and if extend v_1, \dots, v_r to orthonormal basis, then for all other basis vectors both sides give 0.

Let's consider matrices $A \in \mathbb{C}^{m \times n}$, viewed as linear transformations from \mathbb{C}^n to \mathbb{C}^m .

- Let $\sigma_1^2 \ge \cdots \ge \sigma_r^2 > 0$ be nonzero singular values of A with v_1, \ldots, v_r and w_1, \ldots, w_r as the right and left singular vectors respectively.
 - $\triangleright Av_i = \sigma_i w_i$, $A^* w_i = \sigma_i v_i$, where $A^* = \overline{A^T}$.
- Then,

$$A = \sum_{i=1}^{r} \sigma_i w_i v_i^*.$$

Can write this as:

$$A = W\Sigma V^*$$

Where W has $w_1, ..., w_r$ as columns, V^* has $v_1^*, ..., v_r^*$ as rows, and Σ is an $r \times r$ diagonal matrix with $\Sigma_{ii} = \sigma_i$.

$$A = W\Sigma V^*$$

$$= \left(\begin{array}{c} w_1 & w_r \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{array} \right) \begin{pmatrix} \sigma_1 & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix} v_r^*$$

Definition 1.1 A matrix $U \in \mathbb{C}^{n \times n}$ is known as a unitary matrix if the columns of U form an orthonormal basis for \mathbb{C}^n .

If we complete w's and v's to an orthonormal bases, creating W_m and V_n respectively, these are unitary matrices.

Proposition 1.2 *Let* $U \in \mathbb{C}^{n \times n}$ *be a unitary matrix. Then* $UU^* = U^*U = \mathrm{id}$ *, where* id *denotes the identity matrix.*

We had $A = W\Sigma V^*$. We can also write $A = W_m\Sigma'V_n^*$ where $\Sigma'_{ii} = \sigma_i$ for $i \leq r$ and all other entries of Σ' are 0.

$$A = W_m \Sigma' V_n^*$$

$$= \begin{pmatrix} \begin{pmatrix} w_1 & w_r & w_{r+1} & w_m \\ & & & \\ & & & \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & & \ddots & \\ & & & \sigma_r & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

$$Av_i = \sigma_i w_i$$

$$A^*AV = AV = (W\Sigma'V^*)V = W\Sigma'$$

$$AA^*W = AA^*W = AA^*$$

Given matrix A, we may want to find the matrix B of rank $\leq k$ that "best approximates" A.

What notion of approximation?

We'll use spectral norm:
$$||(A - B)||_2 = \max_{v \neq 0} \frac{||(A - B)v||_2}{||v||_2}$$
.

For
$$v = (c_1, \dots, c_n)^{\mathsf{T}}$$
, $||v||_2 = \langle v, v \rangle = \left(\sum_{i=1}^n |c_i|^2\right)^{1/2}$

Next class will see also works for Frobenius norm = $\sqrt{\sum_{ij} (A - B)_{ij}^2}$.

Solution: take top k singular vectors: $B = A_k = \sum_{i=1}^k \sigma_i w_i v_i^*$.

Proposition 2.1
$$||A - A_k||_2 = \sigma_{k+1}$$
.

 $\|(A-B)\|_2 = \max_{v \neq 0} \frac{\|(A-B)v\|_2}{\|v\|_2}.$

Let's start with the easier "≥" direction:

What v should we try?

$$(A - A_k)v_{k+1} = (\sum_{i=k+1}^r \sigma_i w_i v_i^*)v_{k+1} = \sigma_{k+1} w_{k+1}.$$

Length is σ_{k+1} .

Proposition 2.1
$$||A - A_k||_2 = \sigma_{k+1}$$
.

$$\|(A-B)\|_2 = \max_{v \neq 0} \frac{\|(A-B)v\|_2}{\|v\|_2}.$$

Now let's do the "≤" direction:

Write v as linear combination of v_1, \ldots, v_r plus orthogonal component. Orthogonal part in nullspace.

•
$$(A - A_k)v = (\sum_{i=k+1}^r \sigma_i w_i v_i^*)(\sum_{i=1}^r c_i v_i) = \sum_{i=k+1}^r c_i \sigma_i w_i$$

•
$$||(A - A_k)v||^2 = ||\sum_{i=k+1}^r c_i \sigma_i w_i||^2 = \sum_{i=k+1}^r |c_i|^2 |\sigma_i|^2$$

- We can wlog assume ||v|| = 1. What does this say about $\sum_{i=k+1}^{r} |c_i|^2$? Ans: ≤ 1 .
- So, $\sum_{i=k+1}^{r} |c_i|^2 |\sigma_i|^2$ is maximized at $c_{k+1} = 1$. Get $||(A A_k)v||_2^2 \le \sigma_{k+1}^2$.

Proposition 2.1
$$||A - A_k||_2 = \sigma_{k+1}$$
.

$$\|(A-B)\|_2 = \max_{v \neq 0} \frac{\|(A-B)v\|_2}{\|v\|_2}.$$

Now, just need to show that no other rank-k approximation can get closer.

But first, note that our argument also shows that $||A||_2 = \sigma_1$.

- $Av_1 = (\sum_{i=1}^r \sigma_i w_i v_i^*) v_1 = \sigma_1 w_1$. Length is σ_1 .
- $Av = (\sum_{i=1}^r \sigma_i w_i v_i^*)(\sum_{i=1}^r c_i v_i) = \sum_{i=1}^r c_i \sigma_i w_i$. $||Av||^2 = \sum_{i=1}^r c_i^2 \sigma_i^2 \le \sigma_1^2$.

$$\|(A-B)\|_2 = \max_{v \neq 0} \frac{\|(A-B)v\|_2}{\|v\|_2}.$$

Proposition 2.4 Let $B \in \mathbb{C}^{m \times n}$ have $\operatorname{rank}(B) \leq k$ and let k < r. Then $||A - B||_2 \geq \sigma_{k+1}$.

Proof: (very similar to proof for Courant-Fischer thm)

- Since $rank(B) \le k$, the nullspace of B has dimension $\ge n k$. (rank-nullity thm)
- So, (nullspace of B) \cap span $(v_1, ..., v_{k+1})$ is a subspace of dimension ≥ 1 . Pick some unit-length $\hat{z} = \sum_{1 \leq i \leq k+1} c_i v_i$ in this intersection.
- We have $(A B)\hat{z} = A\hat{z} B\hat{z} = A\hat{z}$, so:
- $\|(A B)\hat{z}\|_{2}^{2} = \|A\hat{z}\|_{2}^{2} = \langle A\hat{z}, A\hat{z} \rangle = \langle \sum_{1 \le i \le k+1} c_{i}\sigma_{i}w_{i}, \sum_{1 \le i \le k+1} c_{i}\sigma_{i}w_{i} \rangle$ $= \sum_{1 \le i \le k+1} |c_{i}|^{2}\sigma_{i}^{2} \ge (\sum_{1 \le i \le k+1} |c_{i}|^{2})\sigma_{k+1}^{2} = \sigma_{k+1}^{2}$

Midterm next Monday

- Where: In class (TTIC 530)
- When: 1:30pm 3:00pm, Monday April 17
- You may bring in one sheet of notes.