TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 7: SVD for Matrices

Recap

- Real Spectral Theorem (every self-adjoint operator has an orthonormal basis of eigenvectors, Raleigh quotients: $R_{\varphi}(v)=\langle\hat{v}, \varphi(\hat{v})\rangle$, eigenvectors as maximizers/minimizers, positive semi-definiteness.
- Consider $\varphi: V \rightarrow W$. Analyze using eigenvectors/eigenvalues of $\varphi^{*} \varphi$ and $\varphi \varphi^{*}$.
- If v is eigenvector of $\varphi^{*} \varphi: V \rightarrow V$ with eigenvalue $\lambda \neq 0$, then $\varphi(v)$ is eigenvector of $\varphi \varphi^{*}: W \rightarrow W$ with eigenvalue λ; in other direction, $w, \varphi^{*}(w)$.
- If v_{1}, v_{2} are orthogonal eigenvectors of $\varphi^{*} \varphi$ then $\varphi\left(v_{1}\right), \varphi\left(v_{2}\right)$ are orthogonal eigenvectors of $\varphi \varphi^{*}$.
- SVD: Let $\sigma_{1}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be nonzero eigenvalues of $\varphi^{*} \varphi$ with corresponding orthonormal eigenvectors v_{1}, \ldots, v_{r}. Let $w_{i}=\varphi\left(v_{i}\right) / \sigma_{i}$. Then:
$>w_{1}, \ldots, w_{r}$ are orthonormal, $\varphi\left(v_{i}\right)=\sigma_{i} w_{i}$ and $\varphi_{i}^{*}\left(w_{i}\right)=\sigma_{i} v_{i}$.
$>\varphi=\sum_{i=1}^{r} \sigma_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$, where $\left|w_{i}\right\rangle\left\langle v_{i}\right|$ is outer product.

SVD for Matrices

Let's consider matrices $A \in \mathbb{C}^{m x n}$, viewed as linear transformations from \mathbb{C}^{n} to \mathbb{C}^{m}.

- Let $\sigma_{1}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be nonzero singular values of A with v_{1}, \ldots, v_{r} and w_{1}, \ldots, w_{r} as the right and left singular vectors respectively.

$$
>A v_{i}=\sigma_{i} w_{i}, A^{*} w_{i}=\sigma_{i} v_{i}, \text { where } A^{*}=\overline{A^{T}}
$$

- Then,

$$
A=\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{*}
$$

- Check: $\left(\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{*}\right) v_{j}=\sigma_{j} w_{j} v_{j}^{*} v_{j}=\sigma_{j} w_{j}=A v_{j}$, and if extend v_{1}, \ldots, v_{r} to orthonormal basis, then for all other basis vectors both sides give 0 .

SVD for Matrices

Let's consider matrices $A \in \mathbb{C}^{m x n}$, viewed as linear transformations from \mathbb{C}^{n} to \mathbb{C}^{m}.

- Let $\sigma_{1}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be nonzero singular values of A with v_{1}, \ldots, v_{r} and w_{1}, \ldots, w_{r} as the right and left singular vectors respectively.
$\Rightarrow A v_{i}=\sigma_{i} w_{i}, A^{*} w_{i}=\sigma_{i} v_{i}$, where $A^{*}=\overline{A^{T}}$.
- Then,

$$
A=\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{*}
$$

- Can write this as:

$$
A=W \Sigma V^{*}
$$

Where W has w_{1}, \ldots, w_{r} as columns, V^{*} has $v_{1}^{*}, \ldots, v_{r}^{*}$ as rows, and Σ is an $r \times r$ diagonal matrix with $\Sigma_{i i}=\sigma_{i}$.

SVD for Matrices

$$
\begin{aligned}
& A=W \Sigma V^{*}
\end{aligned}
$$

SVD for Matrices

Definition 1.1 A matrix $U \in \mathbb{C}^{n \times n}$ is known as a unitary matrix if the columns of U form an orthonormal basis for \mathbb{C}^{n}.

If we complete w 's and v 's to an orthonormal bases, creating W_{m} and V_{n} respectively, these are unitary matrices.

Proposition 1.2 Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. Then $U U^{*}=U^{*} U=\mathrm{id}$, where id denotes the identity matrix.

We had $A=W \Sigma V^{*}$. We can also write $A=W_{m} \Sigma^{\prime} V_{n}^{*}$ where $\Sigma_{i i}^{\prime}=\sigma_{i}$ for $i \leq r$ and all other entries of Σ^{\prime} are 0 .

SVD for Matrices

$$
A=W_{m} \Sigma^{\prime} V_{n}^{*}
$$

$$
\begin{aligned}
& A v_{i}=\sigma_{i} w_{i} \\
& A V=\left(W \Sigma^{\prime} V^{*}\right) V=W \Sigma^{\prime}
\end{aligned}
$$

$A^{*} A V=$
$A A^{*} W=$

Low-rank approximation for matrices

Given matrix A, we may want to find the matrix B of rank $\leq k$ that "best approximates" A.
What notion of approximation?

We'll use spectral norm: $\quad\|(A-B)\|_{2}=\max _{v \neq 0} \frac{\|(A-B) v\|_{2}}{\|v\|_{2}}$.

$$
\begin{aligned}
\text { For } v= & \left(c_{1}, \cdots, c_{n}\right)^{\top} \\
& \|v\|_{2}=\langle v, v\rangle=\left(\sum_{i=1}^{n}\left|c_{i}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Next class will see also works for Frobenius norm $=\sqrt{\sum_{i j}(A-B)_{i j}{ }^{2}}$.

Solution: take top k singular vectors: $B=A_{k}=\sum_{i=1}^{k} \sigma_{i} w_{i} v_{i}^{*}$.

Low-rank approximation for matrices

Proposition 2.1 $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$.

$$
\|(A-B)\|_{2}=\max _{v \neq 0} \frac{\|(A-B) v\|_{2}}{\|v\|_{2}} .
$$

Let's start with the easier " \geq " direction:
What v should we try?
$\left(A-A_{k}\right) v_{k+1}=\left(\sum_{i=k+1}^{r} \sigma_{i} w_{i} v_{i}^{*}\right) v_{k+1}=\sigma_{k+1} w_{k+1}$.
Length is σ_{k+1}.

Low-rank approximation for matrices

Proposition 2.1 $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$.

$$
\|(A-B)\|_{2}=\max _{v \neq 0} \frac{\|(A-B) v\|_{2}}{\|v\|_{2}} .
$$

Now let's do the " \leq " direction:

Write v as linear combination of v_{1}, \ldots, v_{r} plus orthogonal component. Orthogonal part in nullspace.

- $\left(A-A_{k}\right) v=\left(\sum_{i=k+1}^{r} \sigma_{i} w_{i} v_{i}^{*}\right)\left(\sum_{i=1}^{r} c_{i} v_{i}\right)=\sum_{i=k+1}^{r} c_{i} \sigma_{i} w_{i}$
- $\left\|\left(A-A_{k}\right) v\right\|^{2}=\left\|\sum_{i=k+1}^{r} c_{i} \sigma_{i} w_{i}\right\|^{2}=\sum_{i=k+1}^{r}\left|c_{i}\right|^{2}\left|\sigma_{i}\right|^{2}$
- We can wlog assume $\|v\|=1$. What does this say about $\sum_{i=k+1}^{r}\left|c_{i}\right|^{2}$? Ans: ≤ 1.
- So, $\sum_{i=k+1}^{r}\left|c_{i}\right|^{2}\left|\sigma_{i}\right|^{2}$ is maximized at $c_{k+1}=1$. Get $\left\|\left(A-A_{k}\right) v\right\|_{2}^{2} \leq \sigma_{k+1}^{2}$.

Low-rank approximation for matrices

Proposition 2.1 $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$.

$$
\|(A-B)\|_{2}=\max _{v \neq 0} \frac{\|(A-B) v\|_{2}}{\|v\|_{2}} .
$$

Now, just need to show that no other rank- k approximation can get closer.

But first, note that our argument also shows that $\|A\|_{2}=\sigma_{1}$.

- $A v_{1}=\left(\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{*}\right) v_{1}=\sigma_{1} w_{1}$. Length is σ_{1}.
- $A v=\left(\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{*}\right)\left(\sum_{i=1}^{r} c_{i} v_{i}\right)=\sum_{i=1}^{r} c_{i} \sigma_{i} w_{i} .\|A v\|^{2}=\sum_{i=1}^{r} c_{i}^{2} \sigma_{i}^{2} \leq \sigma_{1}^{2}$.

Low-rank approximation for matrices

$$
\|(A-B)\|_{2}=\max _{v \neq 0} \frac{\|(A-B) v\|_{2}}{\|v\|_{2}}
$$

Proposition 2.4 Let $B \in \mathbb{C}^{m \times n}$ have $\operatorname{rank}(B) \leq k$ and let $k<r$. Then $\|A-B\|_{2} \geq \sigma_{k+1}$.
Proof: (very similar to proof for Courant-Fischer thm)

- Since $\operatorname{rank}(B) \leq k$, the nullspace of B has dimension $\geq n-k$. (rank-nullity thm)
- So, (nullspace of $B) \cap \operatorname{span}\left(v_{1}, \ldots, v_{k+1}\right)$ is a subspace of dimension ≥ 1. Pick some unit-length $\hat{z}=\sum_{1 \leq i \leq k+1} c_{i} v_{i}$ in this intersection.
- We have $(A-B) \hat{z}=A \hat{z}-B \hat{z}=A \hat{z}$, so:
- $\|(A-B) \hat{z}\|_{2}^{2}=\|A \hat{z}\|_{2}^{2}=\langle A \hat{z}, A \hat{z}\rangle=\left\langle\sum_{1 \leq i \leq k+1} c_{i} \sigma_{i} w_{i}, \sum_{1 \leq i \leq k+1} c_{i} \sigma_{i} w_{i}\right\rangle$

$$
=\sum_{1 \leq i \leq k+1}\left|c_{i}\right|^{2} \sigma_{i}^{2} \geq\left(\sum_{1 \leq i \leq k+1}\left|c_{i}\right|^{2}\right) \sigma_{k+1}^{2}=\sigma_{k+1}^{2}
$$

Midterm next Monday

- Where: In class (TTIC 530)
- When: 1:30pm - 3:00pm, Monday April 17
- You may bring in one sheet of notes.

